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Next Lectures

* Intro to Continual Learning (today)
« Motivations and problem definition
« Benchmarks and methods
* Open research questions

 Learning multiple task and multiple agents
 Continual and Multi-Task Learning in the LLM era



« Understanding the problems of
* Learning over time
« Sharing knowledge between different ML agents
« Generalizing to novel task

» Highlighting open research questions



Resources

* Video lectures phd course on CL:
https://course.continualai.org/

* Notebooks master course:
https://qgithub.com/AntonioCarta/continual-learning-course



https://course.continualai.org/
https://github.com/AntonioCarta/continual-learning-course

Avalanche

 CL library built on top of Pytorch

 Currently the most extensive collection of
CL benchmarks and algorithms

« Used by the CL community for research,
new benchmarks, challenges and courses

Website: avalanche.continualai.org/
CL-baselines:

https:.//github.com/continual Al/continual-
learning-baselines/

Avalanche-demo: .
https://qgithub.com/AntonioCarta/avalanche-

demo
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Continual A/

model = SimpleMLP(num_classes=10)

perm_mnist = PermutedMNIST(n_experiences=3)
train_stream = perm_mnist.
test_stream = perm_mnist.

optimizer = SGD(model. (), lr= , momentum= )

criterion = CrossEntropyLoss()

cl_strategy = Naive(
model, optimizer, criterion, train_mb_size=32, train_epochs=2,
eval_mb_size=32, device=device)

results = []
for train_exp in train_stream:
cl_strategy. (train_exp)
results. (cl_strategy. (test_stream))



https://avalanche.continualai.org/
https://github.com/continualAI/continual-learning-baselines/
https://github.com/continualAI/continual-learning-baselines/
https://github.com/AntonioCarta/avalanche-demo
https://github.com/AntonioCarta/avalanche-demo

Deep Continual Learning



Lifelong Learning Artificial Agents

Our goals:

1.

Incremental Learning: knowledge
and skills accumulation and re-use.
Learn new skills + don't forget.

Fast Adaptation: adapt to ever-
changing environments

Generalization: adapt to unseen
environments and improve learning
algorithm

Al Agent Architecture
(Russel & Norvig, 1995 - 2022)

@ Sensors
1
1

percepts
actions o

actuators



https://aima.cs.berkeley.edu/

A Long-Desired Objective

* Incremental learning with rule-based
systems (Diederich, 1987)

open world m==  continual
e Forgetting in Neural Networks (French, E soocor oo £ I
1989) | = fewanor . g
3 15000 - = mull.i—.Lask E‘
* Incremental learning with Kernel Machines 3. v -I 2, 100- I
S wes continual ml =
(Tat-Jun, 1999) ; 100 - litelong _ll § I
. - _E i. —E 200- oy N [
e Continual Learning (Ring, 1998) S o000- =5 5 T
: esgdesailll = | oaagitilIHANNN
¢ Lifelong Learning (Thrun’ 1998) . 2[]‘(][]_::;2(]%[]EE===2EI[]----2[T].E. =2(T2!} " 2(?[]!}-.. ZEE} 2010 2(]‘1;’: 2[]‘2(]
] o Year Year
¢ Dataset Shift (Quionero-Candela, 2008)
: : . Figure 1: Per year machine learning publications. Left: cumulative amount of papers across key-
[ ] -
Never Endmg Learning (MItChE", 2009) words with continuous components that influence continual learning practice, see Section 2. Right:
e Concept Drift Adaptation (Ditzler, 2015) increasing use of “continual” machine learning, demonstrating a shift in use of terminology with re-
! spect to the preceding emphasis on the term “lifelong”. Data queried using the Microsoft Academic
° Deep Continual Lea rning (Kirkpatrick, Graph utilities (Sinha et al., 2015) based on keyword occurrence in the abstract.
2016)

e Lifelong (Language) Learning (Liu, 2018)

CLEVA-Compass: A Continual Learning EValuation Assessment Compass to Promote Research Transparency and Comparability, Martin Mundt et al. preprint, 2021 8



https://arxiv.org/abs/2110.03331

CL and Neuroscience

“We are not looking for incremental improvements in state-of-the-
art Al and neural networks, but rather paradigm-changing
approaches to machine learning that will enable systems to
continuously improve based on experience.”

— Hava Siegelmann, 2018



Practical Motivations

 Training is expensive
 Data is always changing
» We want to reuse previous models

10
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Dealing with Non-Stationary

Environments

“The world is changing and we must change with it" - Ragnar Lothbrok

11



What is Concept Drift (CD)?

What it is:
A change in the real world

 Affects the input/output
distribution

 Disrupt the model’s predictions

What it's not:
* [t's not noise
* |[t's not outliers
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Fig. 3. Types of concept drift

Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 12




CD - A Probabilistic Definition

 Given an input x4, x,, ..., x; of class y we can apply bayes
theorem:

p(y)p(xe|y)
p(x¢)

» p(y) is the prior for the output class (concept)

* p(x;|y) the conditional probability

* Why do we care?
« Different causes for changes in each term
« Different consequences (do we need to retrain our model?)

p(ylxs) =

13



Dataset Shift Nomenclature

Notation:
X covariates/input features
* y class/target variable
* p(y, X) joint distribution

« sometimes the x— y relationship is referred with the generic term
“concept”

The nomenclature is based on causal assumptions:

« Xx—Yy problems: class label is causally determined by input. Example:
credit card fraud detection

« y—X problems: class label determines input. Example: medical
diagnosis

Moreno-Torres, Jose G., Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset
Shift in Classification.” Pattern Recognition 45, no. 1 (January 2012): 521-30. https.//doi.org/10.1016/j.patcog.2011.06.019. 14



https://doi.org/10.1016/j.patcog.2011.06.019

Dataset Shift Nomenclature

Dataset Shift: p;,.,(x,v) # ps: (%, V)
 Informally: any change in the distribution is a shift

Covariate shift: happens in X—Y problems when

* PrraY1x%) = prse(1x) @and perq (x) # pese (%)
« informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happens in Y—X problems when

* Prra(x|y) = pese(xly) and pera () # prse(¥)
 Informally: output->input relationship is the same but the probability of each class is changed

Concept shift:

¢ Dira V%) # pese (V%) @nd prrq (x) = pegp(x) in X—Y problems.

* Pera(X1Y) # Prse(xy) @and iy (y) = pese(¥) in Y—>X problems.
« Informally: the «concept» (i.e. the class)

Moreno-Torres, Jose G., Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset Shift in
Classification.” Pattern Recognition 45, no. 1 (January 2012): 521-30. https.//doi.org/10.1016/j.patcog.2011.06.079.
Dataset Shift in Machine Learning, J. Qui'nonero-Candela et al. MIT Press, 2008.

15



https://doi.org/10.1016/j.patcog.2011.06.019

Real vs Virtual Drift

Original data Real concept drift Virtual drift
A .,.. - A ‘ I o
00, ©° |oo. . 0® 20,5858
.aFOO - -y E}I‘jér ..:fgg
I: O‘O '::* D OO ..I,r:
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p(y|X) changes  p(X) changes, but not p(y|X)

Gama, Jodo, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR) 46.4 (2014): 1-37. 16



Causes of Shifts

Sampling bias:

« The world is fixed but we only see a part of it

» The «visible part» changes over time, causing a shift

« We will also call it virtual drift

« Examples: bias in polls, limited observability of environments, change of domain...

Non-stationary environments:

« The world is continuously changing
« We will also call it real drift
« Examples: weather, financial markets, ...

R ~—— e — e
Deep Continual Learning has been mostly focused on
"virtual drifts" and with knowledge accumulation rather
than adaptation.

TEE———

17



The Stability-Plasticity Dilemma

Stability-Plasticity Dilemma: BV
First learning r
class/task: ‘A’

» stability: remember past concepts

» plasticity: learn new concepts Switching to

class/task: ‘B’ @

The two objectives often interfere with each other!

« | can freeze the network to prevent forgetting
ey

| can do a naive finetuning (or even randomly initialize) X X
to have optimal plasticity >

Catastrophic interference.  Lifelong learning.
Knowledge from both ~ Remembers old task
tasks corrupted. and learns new task.

First Problem in Deep Learning: Catastrophic Forgetting Catastrophic forgeQing

Neurons forget task ‘A.’
 It's not an unsolvable problem. Most DNN have enough
capacity the learn past, current, and future data. We just X : Reference vector neurons < : Previous position
have to design a proper learning method.

Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks 18



Catastrophic Forgetting

Mid-CaffeNet Confusion Matrix
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e A set of new objects
(classes) each day

e 10 the first day, 5 the
following

CORe50: a new Dataset and Benchmark for Continuous Object Recognition, V. Lomonaco & D. Maltoni. Conference on Robot Learning (CoRL), 2017. 19



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rQLINtQAAAAJ&citation_for_view=rQLINtQAAAAJ:zYLM7Y9cAGgC

Transfer and Interference

Sometimes, forgetting is not caused by incremental training. Even multi-
task models have problems with interference!

» Positive Transfer: training tasks jointly (i.e. sharing weights) improves the
performance on the single tasks
« if the tasks are small the joint solution is more robust and less prone to overfitting

* Negative Transfer:
« Sometimes independent models are better
» cross-task interference, different rates of learning
 representational capacity, MT nets need to be bigger

% accuracy
task specific, 1-fc (Rosenbaum et al., 2018) 42 . ‘
task specific, all-fc (Rosenbaum et al., 2018) 49 } mult head ard:ntectures
cross stitch, all-fc (Misra et al., 2016b) 53 } - cross-stitch architecture
independent 67.7 '} independent training

Yu et al. Gradient Surgery for Multi-Task Learning. 2020
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Deep Continual Learning

Definition, Objectives, Desiderata

21



Continual Learning

CL = Incremental Learning from a non-stationary stream
+ environment information: task labels, task boundaries, ...
+ constraints: computational/memory limits, privacy, ...
+ metrics: minimize forgetting, maximize transfer, ...

Suggested review:

T. Lesort et al. “Continual Learning for
Robotics: Definition, Framework, Learning
Strategies, Opportunities and Challenges.”
Information Fusion.
https://doi.org/10.1016/j.inffus.2019.12.004.

Continual Learning



https://doi.org/10.1016/j.inffus.2019.12.004

Common Assumptions

» Shift is only virtual: we do not want to forget, we need to
accumulate knowledge.

* No labeling errors/conflicting information: targets are always
correct (but possibly noisy).

« Unbounded time: No hard latency requirements. We may have
computational constraints.

 Data in each experience can be freely processed: you can
shuffle them, process them multiple times, etc. like you would
do during offline training.

23



Continual Learning Objectives and Desiderata

In continual learning (CL) data arrives in a streaming fash-
ion as a (possibly infinite) sequence of learning experiences
S = e1,...,e,. For asupervised classification problem,
each experience e; consists of a batch of samples D*. where
cach sample is a tuple (x%.yL) of input and target, respec-
tively, and the labels y;. are from the set )*, which is a subset
of the entire universe of classes ). Usually D? is split into a
separate train set D}, . and test set Dj,,.

A continual learning algorithm A“’ is a function with
the following signature:

ACL: ( zC_Ll: ir'ain!Mé—lsli> — <.f1CL?Mi> (l)

where [ is the model learned after training on experience
e;, M, a buffer of past knowledge, such as previous samples
or activations, stored from the previous experiences and
usually of fixed size. The term {; is a task label which may
be used to identify the correct data distribution.

The objective of a CL algorithm is to minimize the loss
L g over the entire stream of data S

" 1 T o
Eﬁr( J'(fh*'”) o Tii Z Erl',':”(- l'(l'..L': D‘:(',q.f) (2)
Z ‘D:l"..‘-}f| =1
=1

IlDIr'.'.'f

|
)Cl"..’ffp( .1(;,:‘“‘-. D;rfsr) - Z ﬁ( :(; L("’-’: )-. ”:‘ )*
j=1

where the loss £(f¢%(a), y) is computed on a single sample
(@, y), such as cross-entropy in classification problems.

Task 1 Task 2 Task 3 Task 4 Task 5
first  second first  second first  second first  second first  second
class  class class  class class  class class  class class  class
A A A A A
: 4 : -
€4 € €; e €5

Ex-Model: Continual Learning from a Stream of Trained Models, Carta et al, 2021.

24




Environment Information — Nomenclature

Different streams require different methods

Stream: A list of experiences, each providing a batch of data
and some additional information (e.g. task labels)
Batch/Online: How much data do we have in each experience?
Class/Domain-incremental: Do we know the type of shifts?

Do we know when the shifts happen?

Do we have task labels at training/inference time?

Task 1 Task 4 Task 5




Continual Learning — Toy Scenarios

1. Task-Incremental: every experience is a different task.

Task 1 Task 2 Task 3

0/

first second first second first second first second first second
class class class class class class class class class class

1. Class-Incremental: every experience contains examples of different classes of a unique classification problem.

0/ 719

1. Domain-Incremental: every experience contains examples (from a different domain) of the same classes.

Task 1 Task 2 Task 10
(permutation 1) (permutation 2) (permutation 10)

0| /|2|3]4]
BaEEA

Three scenarios for continual learning, Van de Ven, 2019

26



Baselines: Naive Finetuning

Train: sequential SGD, each Inference: use last model (M;)
time using only the current
data.
B8 i
(D
———

Note: Naive finetuning often results in catastrophic forgetting. CL methods should

always beat the Naive baseline
27



Task Labels and Multi-Head

Multi-Head architectures have: peas
« a shared feature extractor

* a separate linear classifier (head)
for each task —

» the correct head is selected for T. 2 Y5
each example via multiplicative )
gating S,

 The multi-head architecture is one T

of the big advantages of having Shared layers don't use z Y3
task labels. _

« We can also have task-dependent
hidden layers (architectural
methods




Task-Incremental vs Class-Incremental

incremental learning

e ————— N JEEEEE— task-IL

task-1D

o A

task 1 task n

class-IL

task<lD

Ol - A®

task 1 task n

Y

training testing

29



Task-Incremental vs Class-Incremental

1
201 =;:
3 T, i
= 3 =
z £60 e i
. 4 B 3
e 80 i
.. ’ ‘ .. .. ’ ‘ ! ; : . 100 . ] . A3 5
|:| . O O A O OD ‘ .'-_ A ' Prezdicte?::i lab‘él 2I?re:l:i‘ilgte}t:i(igbelao 10
o || O All® -9 A 1
Hp ¢ Al g :" ‘A 2 N
. @ [ST0 2 b
- 2. 3
é éeo- 2 ,
Fig. 2: A network trained continually to discriminate be- = . N
tween task 1 (left) and task 2 (middle) is unlikely to have 5 o :
learned features to discriminate between the four classes N T 20 40 60 80 100

(right). We call this problem inter-task confusion.

Predicted label

Fig. 3: Examples of task and class confusion matrices for
Finetuning (top row) and Finetuning with 2,000 exemplars
(bottom row) on CIFAR-100. Note the large bias towards
the classes of the last task for Finetuning. By exploiting
exemplars, the resulting classifier is clearly less biased.

30



Classifier Bias in CIL

2.0 6
% 1.5 E 5]
1.0 =
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0 A0 410 [+11] B 100 0 20 40 [&11] a0 100
Classes Classes

Replay does not fix the
Fig. 4: Bias and weight analysis for iCaRL with|2,000 exem-| taspk—r)elzcen oy bias

plars on CIFAR-100. We show the ordered biases and norm
of the last classification layer of the network for different
tasks. Note how the bias and the norm of the weights are
higher for the last tasks. This results in a task-recency bias.
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Sharp vs Blurry Shifts

 Sharp Shifts: drift happen abruptly
* Blurry/Gradual Shifts: drift happen slowly
Most CL methods deal with sharp drifts

Example of
gradual shift:
Rotated MNIST

RotatedMNIST:

CP0eU
/7 ViV 1/
CLtZ¢6L
EFfFTCTES
Awnh 4
b 0 0
299979
AR A
£ £ 8328
L 8 b 44

Task 4

Img source: https://github.com/Continvvm/continuum

-——— -
-

-

Remember the
assumption about
«no conflicting
information»? We
may want to remove
6 or 9 here

e e

32




Continual Learning Benchmarks

Benchmark Current Focus

Split MNIST /Fashion MNIST

Rotation MNIST * Class-Inc / Multi-Task (Often with Task Supervised Signals)
Permutation MNIST

iCIFAR10, 100 * I.1.D by Parts

SVHN * Few Big Tasks

EE)E‘EEE * Unrealistic / Toy Datasets

r S .

iCubWorld28 MOStly SuperVISed

iCubWorld-Transformation * Accuracy

LSUN

ImageNet Recent Growing Trend

Omniglot

i““‘“’fﬂ vOoC * Single-Incremental-Task

ALarl . . . . P
RNN CL benchmark * High-Dimensional Data Streams (highly non-i.i.d.)
CRLMaze (based on VizDoom) * Natural / Realistic Datasets

DeepMind Lab * Mostly Unsupervised

* Scalability and Efficiency

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020. 33



Let N be the stream Ienc_ﬁh T the current timestep,
R ; be the accuracy on the experience i at time t

Time — which model to use:

 Last model: Ry 7

- Averaged over time: T—LZLOZLO R ;
Data — which data to use:

« Current experience: R, :

« Data seen up to now: — Zl oR7i

 Full stream: — Z RTL

. PAST/PRESENT/FUTURE data

 Forgetting = past_acc — current_acc
 Forgetting = - Backward Transfer(BWT)

R TBl TEQ T€3
Try R1,1 Ry 2 R1,3
Try | Raqx Roo Rag
Trz | R31 R32 R3gj

Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurlPS, 2018.

34




Evaluating Representation Learning with Linear Probing

» Evaluate whether the latent representation helps learning
unseen tasks

* Linear Probing:
 Learn a linear classifier on top of the learned representation

« Compare against random feature extractor and previous
models

 Measures whether the learned features transfer to the
new data

35




Continual Learning

Approaches

36



* Replay-Free Continual Learning

* Memory and Computationally Bounded
« Task-free Continual Learning

* Online Continual Learning

37



Baselines

« Finetuning: sequential SGD, each time using only Finetuning Ensemble + task labels
the current data. Catastrophic forgetting. (lower bound) (upper bound)
« Ensemble: Train one independent model for each

experience

« JointTraining / Offline: Concatenate all the data
(keeping task labels) and train starting from a
random’initialization.

- Cumulative: for every experience, accumulate all
data available up to now (Uj},-, Dx) and re-train
starting from the previous médel.

) g

Offline Joint Training Cumulative
General considerations: (upper bound) (upper bound)

« Given enou%h data, starting from scratch always M, oo | [
achieves a higher performance with enough
epochs. B it
» Starting from the previous model achieves faster
convergence than training from scratch.
oG o

38

GDT



Methodologies

Replay
Keep a buffer of old
samples

e Rehearse old
samples

]

| Z¢| data stream

acceptance

I/\\ Pin probability

Y
=7

dropped points

Reservoir Sampling

Regularization
Regularize the model
to balance learning
and forgetting

1 Low error for task B == EwC

= Low error for task A = L2
== N0 penalty

Elastic Weight Consolidation

Image from https.//towardsdatascience.comy/reservoir-sampling-for-efticient-stream-processing-97f47f85c11b

Architectural
Expand the model
over time with new
units/layers

outjril kel ol yrealy

irpend

Progressive Neural Networks




Continual Learning Approaches

Rehearsal Generative Replay
Continual Learning Methods
N
Replay Regularization-based Parameter isolation
methods methods methods
Rehearsal Pseudo Constrained Prior-focused Data-focused Fixed Dynamic
| Rehearsal | | | Network Architectures
iCaRL [16] | GEM[55]  EWC[27]  LwF [58] | |
ER [49] DGR [12] A-GEM [6] IMM [28] LFL [59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL [9]  PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC [57] DMC [60] Piggyback [62] RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]
Riemannian
j Walk [14]
Regularization ~ Architectural

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021. 40



https://arxiv.org/abs/1907.00182%C3%B9
https://ieeexplore.ieee.org/document/9349197

CL Strategy Components

CL methods can be
combined together

Finetuning
 Regularization +

 Architectural + — %
athint I + auxiliary dataset
idouble distillation)

 Bias correction: == { o
methods for output '
I a ye r + exemplars

Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." TPAMI

IL2M

BiC

LUCIR

41




Continual Learning Objective

CL Loss:
LtOt (9) — Lnew (0) + LOld (9)

» We estimate £L"®W (6) from new data (easy)

- How do we estimate £°9 (9)?

« We don't have access to the old data
* We need to approximate it

42



Importance-Based Methods

« An example of prior-focused method:
Model loss function of previous tasks
with surrogate losses. = Low arror for task B — EWC

= Low error for task A = L2
 IDEA: important weights should not . B
change. We can change unimportant 2N
weights only.

» Deep networks are overparameterized. This
means that we should have a lot of free
capacity.

 Each task should have a small number of
important weights.

« PROBLEM: how do we find the important
weights? Fisher Information!

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 20177. 43




CL with Bayesian Updates

) Low error for task B == EwC

= Low error for task A = L2
= == NO penalty

Q :

Bayesian Learning:

« Starting from a prior p(6)

« We learn from data D,

« We obtain a posterior p(6|D,)

Sequential Bayesian Update:

 Given the current model 6, trained up to experience t

« The posterior p;(8; | D;_1, ..., D;) becomes the new prior

. ApFroximation: the posterior will be approximated, which p(6| Da, Dy) = Bayes’ rule
will introduce errors over time (Da. D5 | 9)p(6)
. P51 P = conditional independence
« Can we compute the DNN posterior? Not really, but we p(Da, Dp)
can approximate it P(Da | 0)p(D5 | O)p(6) _ Bayes’ rule on first numerator term
P(Da)p(Dp) L L
PEDA)p(Da)
log p(g | D) = log p(DneW | 9) + log p(e I DOld) - log p(Dnew) p(6) p(DB l 6)10(6) = some terms cancel out
p(Da)p(Dp)
p(6 | Da)p(Dg | 0)
p(Dp) '

44



EWC - Laplace Approximation

Laplace Approximation:
 True posterior p(6 | D,;4) is intractable

« We approximate it with a gaussian with mean 6,
(MAP solution) and covariance F(6,)
* Where F is the Fisher information

« We need the optimal model (enough data and
iterations to converge) 15{

20 p

10F

logp(0 | D) = logp(Dpew | 8) +10gp(0 | Dy1g) — log p(Dpew)

i i
-10 i 10

Image source: wikimedia 45



Fisher Information

2
- Fisher Information:F(6*) = E [(:—anf(xi 9*)) ]

 If 6* are the optimal garameters, the Fisher information is equivalent to the
curvature of the KL(6 |6™)

 This is approximately true at the task boundaries, assuming we have enough data (and
iterations) to train the model until convergence and that the DNN is large enough

« The KL is not the loss function, but it's a good distance measure and often close
to the loss function (e.g. crossentropy)

* The Fisher information Fg@) measures how sensitive the distribution is wrt
changes to each parameter

« Easy to compute: we only need the gradients

* In our setting, the expectation is taken by samplin x) from the data and X
from the mogdel (not I’?he data!) Y pling p(x) pylx)

46



Elastic Weights Consolidation (EWC)

Key Idea: after training, store tuple of

< 61, F'~1 > and use the Fisher Information o Low o fortask 8 = £wic
F'~1 as an importance value. .

EWC loss is like the 12 loss with:

 F=1 the Fisher diagonal coefficients as
weights for each parameter

» The previous weights 8!~ as the “center” of
the loss (i.e. zero loss point)

Elastic: weights are pulled towards the
previous solution (like the 12 decay), weighted
by their importance.

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 20177. 47



Importance weights follow a logarithmic distribution

This is a good news for us because having few important parameters
means that we can use a strong regularization coefficient for them
while having enough free capacity to learn new tasks.

Figure 4: CaffeNet trained by EWC on CORe50 SIT (details in Section . The first row shows F' values
distribution denoting a long tail on the right: considering the logarithmic scale, the number of weights values
taking high values in F' is quite limited. The second row shows the normalized matrix F' obtained by averaging

F’ values and max clipping to 0.001. Saturation to 0.001 is well evident, but after B3 the fraction of saturated
weights is small (about 1/1000).

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 20179. 48



« EWC provides a good proxy loss for past experiences

« Computing the Fisher requires only the gradients (computed at
boundaries)

« Many extensions of EWC with a better (non-diagonal) approximation
of the Fisher or with estimates of the curvature of the loss function
(e.g. Synaptic Intelligence)

Problems:

* Needs task boundaries and large batches, which makes it useless in
online settings

* In «separate» mode it has a linear cost in the number of tasks (one
Fisher and one model stored for each task)
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Online CL and Replay
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« DNN learns one (small) mini-batch at a time
* Drifts happen over time
* No access to task labels

« [deally, no knowledge about task boundaries (many methods
still require them)

* Replay is allowed

o1



Online CL — Desiderata

Evalution in Online CL is more difficult because
the stream is longer, we have less data at each Red diamonds = task boundaries
experience, and task boundaries are unknown.

« Knowledge Accumulation: the model should
improve over time

« Atany pointin time
« High average accuracy but also fast adaptation

« Continual Stability: the model should not forget
previous knowledge

« Atany pointin time
« We often assume virtual drifts when measuring , ;3 i\ L
stability 0 T s = o
0 500 1000 1500 2000
« Representation Quality: the latent iterations
representations should improve over time
« A weaker form of knowledge accumulation/stability

« Can be evaluated on out-of-distribution data or self-
supervised models

o/

Accuracy

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 52



Knowledge Accumulation

Red diamonds = task boundaries

« Average Anytime Accuracy: accuracy a
along the entire curve. N
« Do not confuse with = 50
« Avg accuracy at the end of training (final =
diamond)
* Avg at task boundaries (avg of "0 e 1000 00 2000
d 1a mond S) iteratibns |
. 4 )
Notation: 11 K
 f; model at time i AAA; = n SJESJA(Ei:fj)
. E; experience i =1 =l
i €XP \_ J
« A(E;, f;) accuracy of model f; for A ¢
experience E. Average along the verage accuracy o
l training curve data seen up to now

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 53



Replay Algorithm

Parameters: memory size

During training (finetuning + rehearsal): 8 -’Jit data stream
« Sample from the current data : N
« Sample from the buffer using sampling policy YAN Din probability

reservoir

* Do SGD step on the concatenated mini-batch ’ \:(Q

After each experience (buffer update): N R (1)
» Use insertion policy to choose data from the N
current experience dropped points

« Add example to the buffer
« Use removal policy if the buffer is too big
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Replay

Good News: Replay is a simple

general and effective strategy for CL.
 Approximates an i.i.d distribution | [T
» Approximate cumulative training S —
» Relatively cheap in terms of i/
computations o A —
Bad News: W B W @ w W
[ ) Memory IimitatiOnS Or privacy Figure 5.2: Split-MNIST memory-accuracy  Figure 5.3: Split-CIFAR-10 memory-accuracy
constraints

» Scaling: for long streams we may
need to store alarge buffer. Memory
increases over time

55



Reservoir Sampling

Reservoir sampling: uniform random sampl,in_?,
vg[lthoutsreplacement, of K items from an infinite
stream S.

At time N, we want p(x; € M) = %,Vt <N

Class-Balanced Reservoir Sampling (CBRS):
One RS buffer for each class

8 XLt | data stream

acceptance

¢
f ;\\ Dir, probability

=
N

dropped points

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])

for i := 1 to k

R[i] := S[i]
for 1 := k+1 to n
(* randomInteger(a, b) generates a uniform integer
from the inclusive range {a, ..., b} *)
j := randomInteger(1l, i)
if j <=k
R[J] := S[i]

56



Online Continual Learning with Replay

Notice that we
apply different

augmentation
s at each step!

N Online Continual Learning

for (x_new, y_new) in train_stream:

for k in train_passes:
X_hew, y_new augment(x_new, y_new)
X_mem, y_mem = augment(sample(memory))
compute_loss_and_backprop(x_new, y_new, X_mem, y_mem)
weilghts_udpate( )

update(memory, x_new, y_new)

evaluation

Soutif-Cormerais, Albin, et al. "A comprehensive empirical evaluation on online continual learning.” ICCV Workshops. 2023.




Latent Replay

Output Layer (classes)

« PROBLEM: Replay in the input space is | "“ A |
inefficient and bidlogically implausible. Also Clsse ]
memory intensive with high resolution images ssemnatve | T S I

- SOLUTION: replay latent activations (raminga [H il 3

» Good Accuracy-Memory-Computation trade-offs. ™" | ) ey patomsy = | i

« There is no obvious choice for the layer. Middle Latent ' . lsses ~Conoat (a
layers can be very wide. layer > §885) T | min-tetch evs)

 |f we allow lossy storage activations can be [ 4 2
compressed a lot. Low o : 2

. Algorithm: s |

 Store latent representation training) : L

« Forward new samples up to latent replay layer : :

« Concatenate new and stored representations i A 4

 Forward to the output layer e

Input Lay r(imaées)
Figure 1: Architectural diagram of Latent Replay.

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 58



Freezing + Latent Replay

Output Layer (classes)

* Low layers are trained early ] 1 4
during training. They don't el o
change much afterward. oo % N

* We can freeze them at some T teplaypatems) * @ "W

o | J Concat (at
replay ' (I ’===' ", | mini-batch level)

point. ey A

- Improves latent replay. If we aenerc
don't freeze the latent Low ]
representation in the buffer will v

become outdated over time

Input Layer (images)

Figure 1: Architectural diagram of Latent Replay.
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Continual Stability

 Observe the behavior of the accuracy during training (curve from one diamond to the next)
« CL methods forget and re-learn old experiences during training
« This phenomenon is masked with the typical metrics measured only at boundaries (red

diamonds)
10() T - 07——— ot o ER
: Y - SCR
0.6 4 e
g) ' : 0.5 ‘:: J,\/f ’:' i
= i A R . 8 o
S | %03 [/ A
< |
E l | 0.2 ;'A“’
*r i i ,ﬁ: vy ’ 01 ;
E: \{,' /"u'v‘ '
O = e e = T 0.0 !
() 5 () 0 ]. 0 () 0 ]. 50 () 2 0 () 0 850 900 950 1000 1050
Batch index

1terations

[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022
[3] A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023
[4] A. Soutif et al. «Improving Online Continual Learning Performance and Stability with Temporal Ensembles” ColLAs 23 60



CL for Time Series — CL with RNNs

o Seq uence Iength 4 lwf o0 mas +—  replay-10
. . gern - OWC —4- replay-1 4wl == replay-10
increases forgetting ;. ... L
e Replayis still the best  1o—7—— 10 T
method 0.81 tk:_:*‘ S 0.8 :- B = -.
Lack of g 0o "‘*?-::;;e;;;; T SRl IR .
® aC O a Com mon T ()4 ~ :\h.___{--_.._.._____;_f:_,,j <04 + + j
benchmark for CL on 2] e 02 :
1 1 (1.0 : 0.0 : . !
time series N\ v (S \@2& t\@lmﬁ o WY a s @i\f‘f"‘ t‘ﬁfﬁm- o
%Q\N’ o b N b= o
Model (Sequence Length) Model (Sequence Length)
(a) Permuted MNIST (b) Split MNIST

Figure 6: Average ACC on all steps for different sequence lengths and different CL strategics.
Sequence length causes a decrease in performances among all strategies. Best viewed in color.

A. Cossu et al. “Continual Learning for Recurrent Neural Networks: An Empirical Evaluation.” Neural
Networks. http://arxiv.org/abs/2103.07492.
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CL for Time Series — CL with ESNs

® Alternatlve 1o pl’etl’alnlng SMNIST LSTMT ESN SSC L.STMt ESN
for RNNs EWC 0215002 0.2040.00 EWC 0.105000  0.09.40.02
. LWF 0.31410.07 0471007 LWF 0.1240.01  0.1240.02
o MethOdS that train Only the REPLAY  0.85:003 0.7410.03 REPLAY  0.7410.07 0.3610.07
classifier can be used - R oo
NAIVE U.Qnig_g(} O-QO:I:D.OO NAIVE 0.1 Ui{]_gg 0.1 Oi{]_gg
(S LD A) JOINT 0974000  0.974001 JOINT 0894002 0914002
o EffiClent Table 1: Mean ACC and standard deviation over 5 runs on SMNIST and SSC
benchmarks. SLDA is applied only to ESN since it assumes a fixed feature
® rehersa |_free extractor. SMNIST contains 5 experiences, while SSC contains 10 experiences.

T results are taken from [3], except for replay which has been recomputed to

® Ap pl ICa b I e for O n | Ine C L guarantee the use of the same replay policy (200 patterns in memory).

A. Cossu et al. “Continual Learning with Echo State Networks,” ESANN 2021. http://arxiv.org/abs/2105.07674.
I
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Open Research Question

Beyond Class-Incremental Learning

«Is Class-Incremental Enough For Continual Learning?», Cossu et al, Frontiers in CS, 2021 63



Beyond Class-Incremental Learning

Virtual Drifts

cremental Lea

Y

Sudden Drifts




Classic CL Benchmarks

Class Incremental Domain Incremental
RIY) P¥)  RiY) FiY) = Bul¥) = By(Y)

i o¥x ¥x ¥ ¥ ¥

-
L

L
Y1 ¥a ¥a Yo ¥s ¥

Distinet P(X)

P{X) F(X) ByX)

Gradually
changing P(X)

TmageNet* Cifar100* Cifarl0® Permuted Rotated
MNIST MNIST
Others
MNIST* Cub200* Sequences

» L]
CLAD-C  CORe50.NI .

b .
COReb0 Toys200 iCub . "
Wanderlust ~ CLOC Clear

Eli Verwimp et al. 2022. "CLAD: A Realistic Continual Learning Benchmark for Autonomous Driving.” 65




Forgetting in Different Scenarios

Nearest Class Mean (NCM)  proyy Task for CL Classification
— ﬁ‘ti\_\“—--—-vﬁ Sec. 4
Some tasks are much more Continual NN
robust to CL than others Learning T —
T ,

* Incremental classification 3 z R A
results in catastrophic | T e [ S0
forgett”‘]g ; Reconstruction tasks o

« SSL methods are more robust |~ [” weeon | pASSalgoritn

e Tasks such as reconstruction o N E — {% See.?
are Very rObUSt — Classiﬁcatiin task . E' : —_——'_—'

WLl i L Visualization of Forgetting

. Forgettin% will also depend on H E H
S BCE Loss |€— —

Sec.6

the drifts {iid vs class vs domain -
vs gradual...)

Fr }',r }'?'

Thali, Anh, et al. "Does continual learning= catastrophic forgetting." arXiv preprint arXiv:2101.07295 (2021). 66



Consequences of Realistic Streams

 Gradual drifts: methods can't easily freeze old components,
task/domain inference is more difficult.

* New domains: new classes implicitly provide labels, domains
don't.

* Repetitions: methods can’t easily freeze old components.

 Imbalance: reservoir sampling mimics the unbalance in the
stream.

* Real drift: Replay data may be incorrect.

67




Evaluation with Real vs Virtual Drifts

Example: Data ordered by class (0,0,0,0,0,1,1,1,1..)
 Persistent classifier (predict previous class) is optimal
« The model can (and should) exploit temporal consistency!

* Virtual drift  Real drift
« sampling bias « Concept drift. Example: politician roles
- Evaluation on a static test set and affiliations to political party
+ a.k.a. most of the CL research - Evaluation on the next data (e.g.

prequential evaluation)

* Not a lot of research in CL right now
(Timestamp) . Train . Test

__ V_——-

IID Protocol: Train today, test on today Streaming Protocol: Train today, test on tomorrow

Image from CLEAR paper 68



Real Drift - CLEAR / Wild-Time

CLEAR Wild-Time

- real-world images with smooth temporal evolution ~ * 9 datasets with temporal distribution drifts (real drift)
« Temporal metadata

 Eval-Fix: evaluation on static test data

» Eval-Stream: evaluate on the next K timestamps

 Large unlabeled dataset (~7.8M images)
» Prequential evaluation

» Scenario: domain-incremental and semi-supervised

2004 2011 2014 Distribution shift over time
Training Distribution Test Distribution
(acc: 97.99%) (acc: 79.50%)
/4 o |
@ g Time
- @

1930s °*°* 1960s °+-= 2000s 2010s

Streaming Protocol for Continual Un-/Semi-Supervised Learning

Z Linetal “The CLEAR Benchmark: Continual LEArning on Real-World Imagery” 2021
Yao, Huaxiu et al. “Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time.” NeurlPS 2022 69



Real Drift - CLOC - Continual Localization

 Images with geolocalization and
timestamps
« 9 years of data
* 39M images
« 2M for offline preprocessing
« 712 classes (localization regions)

(a) S2 Cells in our dataset

—— 2010
| —— 2006 -2014

Per-Month Accuracy (%)

Jan2007  Jan2008  Jan2009  Jan2010  Jan2011 Jan2012  Jan2013  Jan2014
Time
Figure 2. Distribution shift in CLOC. We train two supervised
models, one using data from the entire temporal range and the other
only on data from the year 2010. We evaluate both models on
the full temporal range using the validation set (not seen during
training). Due to non-stationarity in the data, the performance of
the 2010 model drops sharply on data from other times.

Z. Cai et al. “Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data.” ICCV 21 70



Temporal Coherence - CoRES0

 Temporally coherent streams

- Domain-incremental, class-
incremental, and repetitions

* CL on-the-edge application:
 Given a pretrained model
« Take a short video of a new object
 Finetune the model

Continuous Object Recognition
« 50 classes

« Short videos of object manipulation with
different background

« Temporal coherence from videos

Many scenarios: batch, online, with

repetitions.

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 71



Simulators and Synthetic Data

Driving simulation CIR Synthetic Generator

« Parameters: « Start from a static dataset (e.g. CIFAR100)
* new classes « Define distribution parameters: stream length,
* weather class balancing, repetitions, ...

* illumination changes

i « Sample stream with the desired probability
« Temporal consistency

* You can tweak the difficulty of the benchmark and
check how different methods perform under
different conditions

A
Occurrence Matrix ~ Concepts (@ A m ¢ + 5 ¢ & 0} CL Streams

Gsamp D {Instances x |
B Parameters e ey e ey e o D T :
My x X x :‘_S‘ . —p e ’ H
N Stream xx xx xS E train |
K Matrix —* (g Xy X x| \ !
—» =X XX ' 1
Ps(S) Generator Iy ' Stest —» a ’:
c b = Sampler s -

T. Hess et al. "A Procedural World Generation Framework for Systematic Evaluation of Continual Learning.” 2021

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 /2



Effect of Natural Repetitions

Naive finetuning approaches replay for long streams with repetitions

Average Test Accuracy Average Seen Class Accuracy Average Missing Class Accuracy
0.6 0.6 0.6
03 A o5 s In unbalanced streams, class-
ey < ' hsha | W ’
> N > oW > e’
< i O A O T i .
3 04 e c o e e g balanced buffers and reservoir
5’ go ' g’ o . .
o2 Strategy K02 | Strategy <02 W Srategy sampling are not effective
—— ER-CB i —— ER-CB ,,ﬂ” —— ER-CB
0-1 Naive 0.1 Naive 0-1 JJJ” Naive
0:5

0.0 4 100 200 300 400 500 004 100 200 300 400 500 0.0 4 100 200 300 400 500 Strategy
Experience Experience Experience 04 —— ER-FA
: —— ER-CB

N«,,A’\f‘\/\/

PR el MO L
= A
Missing class accuracy improves over time, even for naive finetuning g %2
0.9 0.1
o0g| Class Status 4
07| @ Present 0.0
Bos| @ Missing | 0 20 40 60 80 100
Sos il Experience
g 0.4 l _‘;'
0822 “’ l el | | ' Figure 10: Accuracy of Infrequent Classes.
.'\h‘) g ' da ')f
00 8 Iu &&.‘ X | ikl

100 450 500

Experience
Figure 6: Accuracy of a particular class over the stream. The target class is either present or absent in the experiences
indicated by the blue and orange points, respectively.

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 73
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« Benchmarks desiderata: gradual drifts, new domains and
classes, repetitions, temporal coherence, real drift

 Real drifts: Wild-Time, CLEAR, CLOC. Prequential evaluation for
real drifts

« Streaming data: CoRE50 (and many others)

 Simulators and synthetic generators: allow to control drift and
evaluate over many different configurations
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Open Research Questions

CL Methods Robustness
Real-time CL

75



Robust CL Methods

Omniglot
B) Meta testing training performance
« Most methods cheat during hnperparameter
selection by optimizing over the whole
stream!
+ Alternative to Continual Hyperparameter
Selection: design robust models! =

d Example: SiM4C 50 100 150 200 250 300 350 400 450 500 550 600
. . . . Number of meta testing classes
« Efficient meta-continual learning
» Use a single inner update step
« Use exact gradient instead of first-order
approximation

° Resu Its: Inner update step Outer meta loss LMETA

» Higher accuracy Az
» No need for additional hyperparameter selection ® % % @ .
- Easy to plug into existing methods 6 0 _______ -
« Works in continual-meta and meta-continual inner loss L a6
earnin g Compute inner loss Update model Compute meta loss on past & future data

Figure 1. Schematic depiction of SiM4C, after a single inner optimization step the proposed meta-objective optimizes for forward and
backward transfer by utilizing seen past data from previous tasks and unseen future data of the current task.

E. Cetin et al. «A Simple Recipe to Meta-Learn Forward and Backward Transfer *, ICCV 23 76



Real-Time / Infinite Memory / Finite Compute

 Memory is cheap, compute is
expensive

« CL methods are designed for finite
memory usage. Often unrealistic

* The “privacy argument” is not very strong,
because trained models can leak data

 Alternative: real-time, infinite
memory, bounded computational
cost

« Real-time constraints. Methods need to
skip data if they are not fast enough

 Results: Experience Replay
outperforms CL methods

Y. Ghunaim et al. “Real-Time Evaluation in Online Continual Learning: A New Hope.” CVPR 23
A. Prabhu et al. “Computationally Budgeted Continual Learning: What Does Matter?” CVPR 23

CL Strategy Method(A) Cs(A) Delay
Experience Replay  ER[11] 1 0
ACE [6] 1 0
Regularizations LwF [28] 93 13
RWalk [£] 2 |
LR Scheduler PoLLRS [7] 3 2
( ) . MIR [?] 5k ¥
Sampling Strategies GSS [4] 6* 5
20 "
-
93;15 "’.‘r.‘
g s
3 | 7
<10/
£”
o
25
<L
0 100k 200k 300k
Time Steps
-o- ER ACE LwF RWalk
PoLRS MIR GSS
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Conclusion
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Main Message

The goal of Continual Learning is to understand how to

design machine learning models that learn over time

* on a constrained budget (memory/compute/real-time requirements)
« with non-stationary data

» Wide applications to real problems and foundational ML problems

 Learning on-the-edge
 Fast adaptation, knowledge accumulation and lifelong learning
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Open Challenges

* CL Benchmarks:
 Real drifts and prequential evaluation
 Exploitation of temporal coherence
 Real-time training with infinite memory
« Compute-bounded lifelong learning

* CL Robustness to
« stream parameters
« (continual) hyperparameter selection
« stability gap
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