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Next Lectures

• Intro to Continual Learning (today)
• Motivations and problem definition

• Benchmarks and methods

• Open research questions

• Learning multiple task and multiple agents

• Continual and Multi-Task Learning in the LLM era
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Motivations

• Understanding the problems of
• Learning over time

• Sharing knowledge between different ML agents

• Generalizing to novel task

• Highlighting open research questions
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Resources

• Video lectures phd course on CL: 
https://course.continualai.org/

• Notebooks master course: 
https://github.com/AntonioCarta/continual-learning-course
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Avalanche

• CL library built on top of Pytorch

• Currently the most extensive collection of 
CL benchmarks and algorithms

• Used by the CL community for research, 
new benchmarks, challenges and courses

Website: avalanche.continualai.org/

CL-baselines:

https://github.com/continualAI/continual-
learning-baselines/

Avalanche-demo: 
https://github.com/AntonioCarta/avalanche-
demo
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https://github.com/AntonioCarta/avalanche-demo


Deep Continual Learning
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Lifelong Learning Artificial Agents

Our goals:

1. Incremental Learning: knowledge 
and skills accumulation and re-use. 
Learn new skills + don’t forget.

2. Fast Adaptation: adapt to ever-
changing environments 

3. Generalization: adapt to unseen 
environments and improve learning 
algorithm

AI Agent Architecture

(Russel & Norvig, 1995 - 2022)

Environment
1

Environment

𝑛

𝑖

https://aima.cs.berkeley.edu/
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A Long-Desired Objective 

• Incremental learning with rule-based 
systems (Diederich, 1987)

• Forgetting in Neural Networks (French, 
1989)

• Incremental learning with Kernel Machines 
(Tat-Jun, 1999)

• Continual Learning (Ring, 1998)

• Lifelong Learning (Thrun, 1998)

• Dataset Shift (Quiñonero-Candela, 2008)

• Never-Ending Learning (Mitchell, 2009)

• Concept Drift Adaptation (Ditzler, 2015)

• Deep Continual Learning (Kirkpatrick, 
2016)

• Lifelong (Language) Learning (Liu, 2018)

CLEVA-Compass: A Continual Learning EValuation Assessment Compass to Promote Research Transparency and Comparability, Martin Mundt et al. preprint, 2021

https://arxiv.org/abs/2110.03331


CL and Neuroscience

“We are not looking for incremental improvements in state-of-the-
art AI and neural networks, but rather paradigm-changing 

approaches to machine learning that will enable systems to 
continuously improve based on experience.”

— Hava Siegelmann, 2018
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Practical Motivations

• Training is expensive

• Data is always changing

• We want to reuse previous models 
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Dealing with Non-Stationary 
Environments
“The world is changing and we must change with it" - Ragnar Lothbrok
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What is Concept Drift (CD)?

What it is:

• A change in the real world

• Affects the input/output 
distribution

• Disrupt the model’s predictions

What it’s not:

• It’s not noise

• It’s not outliers

Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 12



CD – A Probabilistic Definition 

• Given an input 𝑥1, 𝑥2, … , 𝑥𝑡 of class 𝑦 we can apply bayes 
theorem:

𝑝 𝑦 𝑥𝑡 =
𝑝 𝑦 𝑝 𝑥𝑡 𝑦

𝑝 𝑥𝑡

• 𝑝 𝑦  is the prior for the output class (concept)

• 𝑝 𝑥𝑡 𝑦  the conditional probability

• Why do we care?
• Different causes for changes in each term

• Different consequences (do we need to retrain our model?)

13



Dataset Shift Nomenclature

Notation:
• x covariates/input features

• y class/target variable

• p(y, x) joint distribution

• sometimes the x→ y relationship is referred with the generic term 
“concept“

The nomenclature is based on causal assumptions:
• x→y problems: class label is causally determined by input. Example: 

credit card fraud detection

• y→x problems: class label determines input. Example: medical 
diagnosis

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset 
Shift in Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019. 14

https://doi.org/10.1016/j.patcog.2011.06.019


Dataset Shift Nomenclature

Dataset Shift: 𝑝𝑡𝑟𝑎 𝑥, 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥, 𝑦

• Informally: any change in the distribution is a shift

Covariate shift: happens in X→Y problems when 

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 = 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 ≠ 𝑝𝑡𝑠𝑡(𝑥)

• informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happens in Y→X problems when

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 = 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑦

• Informally: output->input relationship is the same but the probability of each class is changed

Concept shift:

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 ≠ 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 = 𝑝𝑡𝑠𝑡 𝑥  in X→Y problems. 

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 = 𝑝𝑡𝑠𝑡 𝑦  in Y→X problems.

• Informally: the «concept» (i.e. the class) 

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset Shift in 
Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019.

Dataset Shift in Machine Learning, J. Qui˜nonero-Candela et al. MIT Press, 2008. 15

https://doi.org/10.1016/j.patcog.2011.06.019


Real vs Virtual Drift

Gama, João, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR) 46.4 (2014): 1-37. 16



Causes of Shifts

Sampling bias:

• The world is fixed but we only see a part of it
• The «visible part» changes over time, causing a shift
• We will also call it virtual drift
• Examples: bias in polls, limited observability of environments, change of domain…

Non-stationary environments:

• The world is continuously changing
• We will also call it real drift
• Examples: weather, financial markets, …

17

Deep Continual Learning has been mostly focused on 
"virtual drifts" and with knowledge accumulation rather 
than adaptation.



Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks 18

The Stability-Plasticity Dilemma

Stability-Plasticity Dilemma:

• stability: remember past concepts

• plasticity: learn new concepts

The two objectives often interfere with each other!

• I can freeze the network to prevent forgetting

• I can do a naive finetuning (or even randomly initialize) 
to have optimal plasticity

First Problem in Deep Learning: Catastrophic Forgetting

• It’s not an unsolvable problem. Most DNN have enough 
capacity the learn past, current, and future data. We just 
have to design a proper learning method.



Catastrophic Forgetting

19CORe50: a new Dataset and Benchmark for Continuous Object Recognition, V. Lomonaco & D. Maltoni. Conference on Robot Learning (CoRL), 2017.

• A set of new objects 
(classes) each day

• 10 the first day, 5 the 
following

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rQLINtQAAAAJ&citation_for_view=rQLINtQAAAAJ:zYLM7Y9cAGgC


Transfer and Interference

Sometimes, forgetting is not caused by incremental training. Even multi-
task models have problems with interference!

• Positive Transfer: training tasks jointly (i.e. sharing weights) improves the 
performance on the single tasks
• if the tasks are small the joint solution is more robust and less prone to overfitting

• Negative Transfer: 
• Sometimes independent models are better 
• cross-task interference, different rates of learning 
• representational capacity, MT nets need to be bigger

Yu et al. Gradient Surgery for Multi-Task Learning. 2020



Deep Continual Learning
Definition, Objectives, Desiderata 

21



Continual Learning

CL = Incremental Learning from a non-stationary stream
 + environment information: task labels, task boundaries, …
 + constraints: computational/memory limits, privacy, …
 + metrics: minimize forgetting, maximize transfer, …

Suggested review:
T. Lesort et al. “Continual Learning for 
Robotics: Definition, Framework, Learning 
Strategies, Opportunities and Challenges.” 
Information Fusion. 
https://doi.org/10.1016/j.inffus.2019.12.004.

https://doi.org/10.1016/j.inffus.2019.12.004


Common Assumptions

• Shift is only virtual: we do not want to forget, we need to 
accumulate knowledge.

• No labeling errors/conflicting information: targets are always 
correct (but possibly noisy).

• Unbounded time: No hard latency requirements. We may have 
computational constraints.

• Data in each experience can be freely processed: you can 
shuffle them, process them multiple times, etc. like you would 
do during offline training.

23
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Continual Learning Objectives and Desiderata

Ex-Model: Continual Learning from a Stream of Trained Models, Carta et al, 2021.



Environment Information – Nomenclature 

Different streams require different methods
● Stream: A list of experiences, each providing a batch of data 

and some additional information (e.g. task labels)
● Batch/Online: How much data do we have in each experience?
● Class/Domain-incremental: Do we know the type of shifts?
● Do we know when the shifts happen?
● Do we have task labels at training/inference time?



Three scenarios for continual learning, Van de Ven, 2019 26

Continual Learning – Toy Scenarios

1. Task-Incremental: every experience is a different task.

1. Class-Incremental: every experience contains examples of different classes of a unique classification problem.

1. Domain-Incremental: every experience contains examples (from a different domain) of the same classes.



Baselines: Naive Finetuning

Train: sequential SGD, each 
time using only the current 
data.

Inference: use last model (𝑀𝑖)

27

Note: Naive finetuning often results in catastrophic forgetting. CL methods should 
always beat the Naive baseline



Task Labels and Multi-Head

Multi-Head architectures have:

• a shared feature extractor

• a separate linear classifier (head) 
for each task

• the correct head is selected for 
each example via multiplicative 
gating

• The multi-head architecture is one 
of the big advantages of having 
task labels. 

• We can also have task-dependent 
hidden layers (architectural 
methods)



Task-Incremental vs Class-Incremental

29Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022



Task-Incremental vs Class-Incremental

30Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022



Classifier Bias in CIL

31Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022

Replay does not fix the 
task-recency bias



Sharp vs Blurry Shifts

• Sharp Shifts: drift happen abruptly

• Blurry/Gradual Shifts: drift happen slowly

Most CL methods deal with sharp drifts

32img source: https://github.com/Continvvm/continuum

Example of 
gradual shift:
Rotated MNIST

Remember the 
assumption about 

«no conflicting 
information»? We 

may want to remove 
6 or 9 here



33

Continual Learning Benchmarks

Current Focus

• Class-Inc / Multi-Task (Often with Task Supervised Signals)
• I.I.D by Parts
• Few Big Tasks
• Unrealistic / Toy Datasets
• Mostly Supervised
• Accuracy

Recent Growing Trend

• Single-Incremental-Task
• High-Dimensional Data Streams (highly non-i.i.d.)
• Natural / Realistic Datasets
• Mostly Unsupervised
• Scalability and Efficiency

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.



Evaluation

Let 𝑁 be the stream length, 𝑇 the current timestep, 
𝑅𝑡,𝑖 be the accuracy on the experience 𝑖 at time 𝑡

Time – which model to use:

• Last model: 𝑅𝑇,𝑇

• Averaged over time:  
1

𝑇+1
σ𝑡=0

𝑇 σ𝑖=0
𝑡 𝑅𝑡,𝑖  

Data – which data to use:

• Current experience: 𝑅𝑡,𝑡

• Data seen up to now: 
1

𝑇+1
 σ𝑖=0

𝑇 𝑅𝑇,𝑖

• Full stream: 
1

𝑁
 σ𝑖=0

𝑁−1 𝑅𝑇,𝑖

• PAST/PRESENT/FUTURE data
• Forgetting = past_acc – current_acc
• Forgetting = - Backward Transfer(BWT)

34Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurIPS, 2018.



Evaluating Representation Learning with Linear Probing

• Evaluate whether the latent representation helps learning 
unseen tasks

• Linear Probing:
• Learn a linear classifier on top of the learned representation

• Compare against random feature extractor and previous 
models

• Measures whether the learned features transfer to the 
new data

35



Continual Learning 
Approaches

36



Desiderata

• Replay-Free Continual Learning

• Memory and Computationally Bounded

• Task-free Continual Learning

• Online Continual Learning

37



Baselines

38

• Finetuning: sequential SGD, each time using only 
the current data. Catastrophic forgetting. 

• Ensemble: Train one independent model for each 
experience

• JointTraining / Offline: Concatenate all the data 
(keeping task labels) and train starting from a 
random initialization.

• Cumulative: for every experience, accumulate all 
data available up to now (ڂ𝑘=0

𝑖 𝐷𝑘) and re-train 
starting from the previous model.

General considerations:

• Given enough data, starting from scratch always 
achieves a higher performance with enough 
epochs.

• Starting from the previous model achieves faster 
convergence than training from scratch.

Finetuning
(lower bound)

Ensemble + task labels
(upper bound)

Offline Joint Training
(upper bound)

Cumulative
(upper bound)



Methodologies

Replay
● Keep a buffer of old 

samples
● Rehearse old 

samples

Elastic Weight Consolidation

Image from https://towardsdatascience.com/reservoir-sampling-for-efficient-stream-processing-97f47f85c11b

Regularization
● Regularize the model 

to balance learning 
and forgetting

Architectural
● Expand the model 

over time with new 
units/layers

Progressive Neural NetworksReservoir Sampling
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Continual Learning Approaches

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.

https://arxiv.org/abs/1907.00182%C3%B9
https://ieeexplore.ieee.org/document/9349197


CL Strategy Components

41

CL methods can be 
combined together

• Regularization +

• Replay +

• Architectural + 

• Bias correction: 
methods for output 
layer

Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." TPAMI



Continual Learning Objective

CL Loss: 
ℒtot (𝜃) = ℒnew (𝜃) + ℒold (𝜃)

• We estimate ℒnew (𝜃) from new data (easy)

• How do we estimate ℒold (𝜃)?
• We don’t have access to the old data

• We need to approximate it

42



Importance-Based Methods

• An example of prior-focused method: 
Model loss function of previous tasks 
with surrogate losses.

• IDEA: important weights should not 
change. We can change unimportant 
weights only.
• Deep networks are overparameterized. This 

means that we should have a lot of free 
capacity.

• Each task should have a small number of 
important weights.

• PROBLEM: how do we find the important 
weights? Fisher Information!

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 43



CL with Bayesian Updates

Bayesian Learning:

• Starting from a prior 𝑝(𝜃)

• We learn from data 𝐷𝑎

• We obtain a posterior 𝑝 𝜃 𝐷𝑎

Sequential Bayesian Update: 

• Given the current model 𝜃𝑡 trained up to experience 𝑡

• The posterior 𝑝𝑡 𝜃𝑡 𝐷𝑡−1, … , 𝐷1) becomes the new prior

• Approximation: the posterior will be approximated, which 
will introduce errors over time

• Can we compute the DNN posterior? Not really, but we 
can approximate it

log 𝑝(𝜃 ∣ 𝒟) = log 𝑝 𝒟𝑛𝑒𝑤 ∣ 𝜃 + log 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑 − log 𝑝 𝒟𝑛𝑒𝑤

44



EWC – Laplace Approximation

Laplace Approximation:

• True posterior 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑  is intractable

• We approximate it with a gaussian with mean 𝜃𝑡 
(MAP solution) and covariance 𝐹 𝜃𝑡

• Where F is the Fisher information

• We need the optimal model (enough data and 
iterations to converge)

log 𝑝(𝜃 ∣ 𝒟) = log 𝑝 𝒟𝑛𝑒𝑤 ∣ 𝜃 + log 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑 − log 𝑝 𝒟𝑛𝑒𝑤

Image source: wikimedia 45



Fisher Information

• Fisher Information:F(𝜃∗) = E
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃∗)

2

• If 𝜃∗ are the optimal parameters, the Fisher information is equivalent to the 
curvature of the 𝐾𝐿 𝜃 𝜃∗)
• This is approximately true at the task boundaries, assuming we have enough data (and 

iterations) to train the model until convergence and that the DNN is large enough

• The KL is not the loss function, but it’s a good distance measure and often close 
to the loss function (e.g. crossentropy)

• The Fisher information F(𝜃) measures how sensitive the distribution is wrt 
changes to each parameter

• Easy to compute: we only need the gradients

• In our setting, the expectation is taken by sampling 𝑝 𝑥  from the data and 𝑝 𝑦 𝑥  
from the model (not the data!)

46



Elastic Weights Consolidation (EWC)

Key Idea: after training, store tuple of 

< 𝜃𝑖−1, 𝐹𝑖−1 > and use the Fisher Information 
𝐹𝑖−1 as an importance value.

EWC loss is like the l2 loss with:

• 𝐹𝑖−1, the Fisher diagonal coefficients as 
weights for each parameter

• The previous weights 𝜃𝑖−1 as the “center” of 
the loss (i.e. zero loss point)

Elastic: weights are pulled towards the 
previous solution (like the l2 decay), weighted 
by their importance.

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 47



Importance weights follow a logarithmic distribution

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019. 48

This is a good news for us because having few important parameters 
means that we can use a strong regularization coefficient for them 
while having enough free capacity to learn new tasks.



Recap

• EWC provides a good proxy loss for past experiences
• Computing the Fisher requires only the gradients (computed at 

boundaries)
• Many extensions of EWC with a better (non-diagonal) approximation 

of the Fisher or with estimates of the curvature of the loss function 
(e.g. Synaptic Intelligence)

Problems:
• Needs task boundaries and large batches, which makes it useless in 

online settings
• In «separate» mode it has a linear cost in the number of tasks (one 

Fisher and one model stored for each task)

49



Online CL and Replay

50



Online CL

• DNN learns one (small) mini-batch at a time

• Drifts happen over time

• No access to task labels

• Ideally, no knowledge about task boundaries (many methods 
still require them)

• Replay is allowed

51



Online CL – Desiderata

Evalution in Online CL is more difficult because 
the stream is longer, we have less data at each 
experience, and task boundaries are unknown.

• Knowledge Accumulation: the model should 
improve over time

• At any point in time
• High average accuracy but also fast adaptation

• Continual Stability: the model should not forget 
previous knowledge

• At any point in time
• We often assume virtual drifts when measuring 

stability

• Representation Quality: the latent 
representations should improve over time

• A weaker form of knowledge accumulation/stability
• Can be evaluated on out-of-distribution data or self-

supervised models

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 52

Red diamonds = task boundaries



Knowledge Accumulation

• Average Anytime Accuracy: accuracy 
along the entire curve.

• Do not confuse with
• Avg accuracy at the end of training (final 

diamond)
• Avg at task boundaries (avg of 

diamonds)

Notation:

• 𝑓𝑖 model at time 𝑖

• 𝐸𝑖 experience 𝑖

• 𝐴 𝐸𝑖 , 𝑓𝑖 accuracy of model 𝑓𝑖 for 
experience 𝐸𝑖

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 53

Red diamonds = task boundaries

Average accuracy of 
data seen up to now

Average along the 
training curve



Replay Algorithm

Parameters: memory size

During training (finetuning + rehearsal):

• Sample from the current data

• Sample from the buffer using sampling policy

• Do SGD step on the concatenated mini-batch

After each experience (buffer update):

• Use insertion policy to choose data from the 
current experience

• Add example to the buffer

• Use removal policy if the buffer is too big

54



Replay

Good News: Replay is a simple, 
general and effective strategy for CL.
• Approximates an i.i.d distribution
• Approximate cumulative training
• Relatively cheap in terms of 

computations
Bad News:
• Memory limitations or privacy 

constraints
• Scaling: for long streams we may 

need to store a large buffer. Memory 
increases over time

55



Reservoir Sampling

Reservoir sampling: uniform random sampling, 
without replacement, of K items from an infinite 
stream S.

At time N, we want 𝑝 𝑥𝑡 ∈ 𝑀 =
𝐾

𝑁
, ∀𝑡 ≤ 𝑁

Class-Balanced Reservoir Sampling (CBRS):

One RS buffer for each class

56

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])
// fill the reservoir array
for i := 1 to k

R[i] := S[i]

// replace elements with gradually decreasing 
probability
for i := k+1 to n
(* randomInteger(a, b) generates a uniform integer 

from the inclusive range {a, ..., b} *)
j := randomInteger(1, i)
if j <= k

R[j] := S[i]



Online Continual Learning with Replay

Soutif-Cormerais, Albin, et al. "A comprehensive empirical evaluation on online continual learning." ICCV Workshops. 2023. 57

Notice that we
apply different
augmentation
s at each step!



Latent Replay

• PROBLEM: Replay in the input space is 
inefficient and biologically implausible. Also 
memory intensive with high resolution images

• SOLUTION: replay latent activations
• Good Accuracy-Memory-Computation trade-offs.
• There is no obvious choice for the layer. Middle 

layers can be very wide.
• If we allow lossy storage activations can be 

compressed a lot.

• Algorithm:
• Store latent representation
• Forward new samples up to latent replay layer
• Concatenate new and stored representations
• Forward to the output layer

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 58



Freezing + Latent Replay

• Low layers are trained early 
during training. They don’t 
change much afterward.

• We can freeze them at some 
point.

• Improves latent replay. If we 
don’t freeze the latent 
representation in the buffer will 
become outdated over time

59



Continual Stability

• Observe the behavior of the accuracy during training (curve from one diamond to the next)

• CL methods forget and re-learn old experiences during training

• This phenomenon is masked with the typical metrics measured only at boundaries (red 
diamonds)

[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022

[3] A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023
[4] A. Soutif et al. «Improving Online Continual Learning Performance and Stability with Temporal Ensembles” CoLLAs ’23 60



CL for Time Series – CL with RNNs

● Sequence length 
increases forgetting

● Replay is still the best 
method

● Lack of a common 
benchmark for CL on 
time series

A. Cossu et al. “Continual Learning for Recurrent Neural Networks: An Empirical Evaluation.” Neural 
Networks. http://arxiv.org/abs/2103.07492.

http://arxiv.org/abs/2103.07492


CL for Time Series – CL with ESNs

● Alternative to pretraining 
for RNNs

● Methods that train only the 
classifier can be used 
(SLDA)

● Efficient 
● rehersal-free
● Applicable for Online CL

A. Cossu et al. “Continual Learning with Echo State Networks,” ESANN 2021. http://arxiv.org/abs/2105.07674.

http://arxiv.org/abs/2105.07674


Open Research Question
Beyond Class-Incremental Learning

«Is Class-Incremental Enough For Continual Learning?», Cossu et al, Frontiers in CS, 2021 63



64

Beyond Class-Incremental Learning

Class-Incremental Learning

Virtual Drifts

Sudden Drifts



Classic CL Benchmarks

Eli Verwimp et al. 2022. “CLAD: A Realistic Continual Learning Benchmark for Autonomous Driving.” 65



Forgetting in Different Scenarios

Some tasks are much more 
robust to CL than others
• Incremental classification 

results in catastrophic 
forgetting

• SSL methods are more robust
• Tasks such as reconstruction 

are very robust

• Forgetting will also depend on 
the drifts (iid vs class vs domain 
vs gradual…)

66Thai, Anh, et al. "Does continual learning= catastrophic forgetting." arXiv preprint arXiv:2101.07295 (2021).



Consequences of Realistic Streams

• Gradual drifts: methods can’t easily freeze old components, 
task/domain inference is more difficult.

• New domains: new classes implicitly provide labels, domains 
don’t.

• Repetitions: methods can’t easily freeze old components.

• Imbalance: reservoir sampling mimics the unbalance in the 
stream.

• Real drift: Replay data may be incorrect.

67



Evaluation with Real vs Virtual Drifts

• Virtual drift 

• sampling bias

• Evaluation on a static test set

• a.k.a. most of the CL research

Image from CLEAR paper 68

• Real drift
• Concept drift. Example: politician roles 

and affiliations to political party
• Evaluation on the next data (e.g. 

prequential evaluation)
• Not a lot of research in CL right now

Example: Data ordered by class (0,0,0,0,0,1,1,1,1…)
• Persistent classifier (predict previous class) is optimal
• The model can (and should) exploit temporal consistency!



Real Drift - CLEAR / Wild-Time

CLEAR

• real-world images with smooth temporal evolution

• Large unlabeled dataset (~7.8M images)

• Prequential evaluation

• Scenario: domain-incremental and semi-supervised

Z. Lin et al. “The CLEAR Benchmark: Continual LEArning on Real-World Imagery” 2021
Yao, Huaxiu et al. “Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time.” NeurIPS 2022 69

Wild-Time

• 5 datasets with temporal distribution drifts (real drift)

• Temporal metadata

• Eval-Fix: evaluation on static test data

• Eval-Stream: evaluate on the next K timestamps



Real Drift - CLOC – Continual Localization

• Images with geolocalization and 
timestamps
• 9 years of data
• 39M images
• 2M for offline preprocessing
• 712 classes (localization regions)

Z. Cai et al. “Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data.” ICCV ‘21 70



Temporal Coherence - CoRE50

• Temporally coherent streams

• Domain-incremental, class-
incremental, and repetitions

• CL on-the-edge application:
• Given a pretrained model
• Take a short video of a new object
• Finetune the model

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 71

Continuous Object Recognition
• 50 classes
• Short videos of object manipulation with 

different background
• Temporal coherence from videos

Many scenarios: batch, online, with 
repetitions.



Simulators and Synthetic Data

Driving simulation

• Parameters: 
• new classes
• weather 
• illumination changes

• Temporal consistency

T. Hess et al. “A Procedural World Generation Framework for Systematic Evaluation of Continual Learning.” 2021
H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23

72

CIR Synthetic Generator

• Start from a static dataset (e.g. CIFAR100)

• Define distribution parameters: stream length, 
class balancing, repetitions, …

• Sample stream with the desired probability

• You can tweak the difficulty of the benchmark and 
check how different methods perform under 
different conditions



Effect of Natural Repetitions

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 73

Missing class accuracy improves over time, even for naive finetuning

Naive finetuning approaches replay for long streams with repetitions

In unbalanced streams, class-
balanced buffers and reservoir 
sampling are not effective



Recap

• Benchmarks desiderata: gradual drifts, new domains and 
classes, repetitions, temporal coherence, real drift

• Real drifts: Wild-Time, CLEAR, CLOC. Prequential evaluation for 
real drifts

• Streaming data: CoRE50 (and many others)

• Simulators and synthetic generators: allow to control drift and 
evaluate over many different configurations

74



Open Research Questions
CL Methods Robustness

Real-time CL

75



Robust CL Methods

• Most methods cheat during hyperparameter 
selection by optimizing over the whole 
stream!

• Alternative to Continual Hyperparameter 
Selection: design robust models!

• Example: SiM4C
• Efficient meta-continual learning
• Use a single inner update step
• Use exact gradient instead of first-order 

approximation

• Results: 
• Higher accuracy
• No need for additional hyperparameter selection
• Easy to plug into existing methods
• Works in continual-meta and meta-continual 

learning

E. Cetin et al. «A Simple Recipe to Meta-Learn Forward and Backward Transfer “, ICCV ‘23 76

Omniglot



Real-Time / Infinite Memory / Finite Compute

• Memory is cheap, compute is 
expensive
• CL methods are designed for finite 

memory usage. Often unrealistic
• The “privacy argument” is not very strong, 

because trained models can leak data

• Alternative: real-time, infinite 
memory, bounded computational 
cost
• Real-time constraints. Methods need to 

skip data if they are not fast enough

• Results: Experience Replay 
outperforms CL methods

Y. Ghunaim et al. “Real-Time Evaluation in Online Continual Learning: A New Hope.” CVPR ’23
A. Prabhu et al. “Computationally Budgeted Continual Learning: What Does Matter?” CVPR ‘23

77



Conclusion
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Main Message

The goal of Continual Learning is to understand how to 
design machine learning models that learn over time
• on a constrained budget (memory/compute/real-time requirements)

• with non-stationary data

• Wide applications to real problems and foundational ML problems
• Learning on-the-edge

• Fast adaptation, knowledge accumulation and lifelong learning

79



Open Challenges

• CL Benchmarks:
• Real drifts and prequential evaluation

• Exploitation of temporal coherence

• Real-time training with infinite memory

• Compute-bounded lifelong learning

• CL Robustness to
• stream parameters

• (continual) hyperparameter selection

• stability gap

80
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